LITERATURE CITED

- 1. R.N. Chopra, I.C. Chopra, K.L. Handa, and L.D. Kapur, "Indigenous Drugs of India," Calcutta: U.N. Dhur and Sons, Private Ltd., 2nd ed., 1958, p. 412.
- 2. L.M. Perry, "Medicinal Plants of East and Southeast Asia," Cambridge: MIT Press, 1980, p. 267.
- 3. I.H. Burkill, "A Dictionary of the Economic Products of the Malay Peninsula," Kuala Lumpur: The Ministry of Agriculture and Co-operatives, Malaysia, 1966, p. 2113.
- P. Phaet-thanesuara, "Pramual Sapphakhun Ya Thai" (Medicinal Uses of Thai Drugs), vol. 2, Bangkok: Samakhon Rongrien Phaet Phaen Boran (The Association of the School of Old-style Medicine), 1967, p. 208.
- 5. C. Khasiphand, "Tamrah Phaesat Suksah" (Textbook of Medicinal Education), Thonburi: Ministry of Public Health, Nakornthon Phaesat, 1968, p. 239.
- 6. M. Tomita, M. Kozuka, and S. Uyeo, Yakugaku Zasshi, 86, 460 (1966).
- 7. M. Tomita and M. Kozuka, Yakugaku Zasshi, 86, 871 (1966).
- 8. M. Tomita and M. Kozuka, Yakugaku Zasshi, 87, 1203 (1967).
- 9. J.S. Stas, Bull. Acad. Roy. Med. Belg., 11, 304 (1851).
- J. Otto, Ann. Chem. Pharm., 100, 39 (1856), as cited in C.G. Daubney and L.C. Nickolls, Analyst, 62, 851 (1937).

Received 19 October 1984

SUGIOL AND 5α-STIGMASTANE-3,6-DIONE FROM THE CHINESE DRUG "TI-KU-P'I" (LYCII RADICIS CORTEX)¹

MAMORU NOGUCHI,² KENSHU MOCHIDA,

National Institute of Hygienic Sciences, Osaka Branch, 1-1-43, Hoenzaka, Higashi-ku, Osaka 540, Japan

Teturo Shingu,

Faculty of Pharmaceutical Sciences, Kobe-Gakuin University, Arise, Ikawadani-cho, Nishi-ku, Kobe 673, Japan

KAZUYOSHI FUJITANI, and MUTSUO KOZUKA*

Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607, Japan

"Ti-ku-p'i (root bark of *Lycium chinense* Mill., Solanaceae) has been used in traditional Chinese medicine for the treatment of fever, hemorrhagic inflammation, hypertension, and ulcers. Several compounds (betaine, linoleic acid, linolenic acid, melissic acid, β -sitosterol, cinnamic acid, and kukoamine A) have been isolated previously from the crude drug (1-4). As part of our search for the constituents of "Ti-ku-p'i", we reported the isolation of a new dipeptide, lyciumamide (5). In this communication, we describe the isolation and identification of sugiol and 5α -stigmastane-3,6-dione from the neutral fraction of the crude drug extracts. In the course of identification of the steroidal diketone, an exact coincidence of ¹H-nmr spectra in CDCl₃ with reported data (6) was not obtained (e.g., the chemical shift for the C-18 angular methyl was observed as $\delta 0.70$, while $\delta 0.76$ was reported). As the authentic sample was not available for direct comparison, 5α -stigmastane-3,6-dione³ was synthesized from β -sitosterol (8). Identity of the isolated steroidal diketone and the synthetic compound was then fully established, including exact coincidence of ¹H-nmr spectra as described in the experimental section.

EXPERIMENTAL

MATERIAL.—The crude drug (dried root bark) was obtained from Mikuni & Co., Ltd., Osaka, Japan.

¹This paper forms Part II of "Studies on the Constituents of Chinese Drug 'Ti-ku-p'i'." For Part I, see Noguchi *et al.* (5).

²Present address: National Institute of Hygienic Sciences, 1-18-1, Kamiyoga, Setagaya-ku, Tokyo 158, Japan.

³The compound was also synthesized according to the method described by Fieser for 5α -cholestane-3,6-dione (7).

Brief Reports

EXTRACTION and ISOLATION.—The ground crude drug (50.5 kg) was percolated with 50% EtOH at 60°, and the extract was concentrated *in vacuo* to give a resinous precipitate (1.3 kg) and a H₂O soluble residue (3.8 kg). A part of the former (365 g) was dissolved in CH₂Cl₂, and the solution was washed with 3% citric acid and 3% NaHCO₃ solution. The remaining neutral fraction was chromatographed on silica gel. The fraction eluted with petroleum ether-Et₂O (9:1) gave sugiol (30 mg), while the fraction eluted with petroleum ether-Et₂O (8:2) contained 5 α -stigmastane-3,6-dione (100 mg).

Compound	Identification	Reference
sugiol	mp, uv, ir, ms, ¹ H nmr, elemental analysis acetate (mp, mmp, $[\alpha]D$, ir, ¹ H nmr,	(9)
5α -stigmastane-3,6-dione	elemental analysis) mp, mmp, ir, ¹ H nmr, ms, cd, elemental	(10)
	analysis	(6, 8)

Full details of the isolation and identification of the compounds are available on request to the senior author.

ACKNOWLEDGMENTS

We wish to thank Maruishi Seiyaku Co. for preparing the extract of "Ti-ku-p'i"; Dr. K. Kuriyama, Shionogi Research Laboratories, Shionogi & Co., Ltd., for measuring cd spectra; Prof. Y. Kondo, Tohoku University, for providing an authentic sample of sugiol acetate; Dr. K. Kitamura, Kyoto University, and Dr. K. Hashimoto, Kyoto Pharmaceutical University, for ¹H-nmr and ms measurements, respectively. We are also indebted to Shionogi Research Laboratories, for elemental analyses, and to Prof. S. Hayashi, Hiroshima University, for his helpful discussions.

LITERATURE CITED

- 1. K. Mizobuchi, Y. Inoue, M. Nagai, and J. Higashi, Shoyakugaku Zasshi, 17, 16 (1963).
- K. Mizobuchi, H. Kobayashi, M. Nagai, T. Shimaoka, and J. Higashi, Tokushima Daigaku Yakugaku Kenkyu Nempo, 14, 10 (1965).
- S. Fukushi and H. Tanaka, Monbusho Kenkyu Hokoku Shuroku, 1967, Nogaku-ben, III, 96 (1968); Igaku Chuo Zasshi, 259, 80 (1970).
- 4. S. Funayama, K. Yoshida, C. Konno, and H. Hikino, Tetrahedron Lett., 1980, 1355.
- 5. M. Noguchi, K. Mochida, T. Shingu, M. Kozuka, and K. Fujitani, Chem. Pharm. Bull., **32**, 3584 (1984).
- 6. S. Hayashi, T. Okude, A. Shimizu, and T. Matsuura, Chem. Pharm. Bull., 17, 163 (1969).
- 7. L.F. Fieser, J. Am. Chem. Soc., 75, 4377 (1953).
- 8. R.E. Marker, H.M. Crooks, Jr., E.M. Jones, and E.L. Wittbecker, J. Am. Chem. Soc., 64, 219 (1942).
- 9. T. Kondo, H. Imamura, and M. Suda, Yakugaku Zasshi, 79, 1298 (1959).
- 10. Y. Kondo, T. Ikenoue, and T. Takemoto, Chem. Pharm. Bull., 11, 678 (1963).

Received 12 November 1984